
4.2 One-Dimensional Infinite Square Well Potential 

Let us consider a particle of mass m confined in a region of width 2𝑎 from 𝑥 =

−𝑎 𝑡𝑜 𝑥 = +𝑎 by impenetrable walls. Such a system is also called a one-

dimensional box.  

 

 Inside the box, the particle is free but experiences a sudden large force directed 

towards the origin as it reaches the points 𝑥 = ±𝑎. Therefore, the potential energy 

for this problem is, 

 

To find the eigenfunctions and energy eigenvalues for this system, we have to 

solve the time-independent Schrödinger equation, 

 

Since the potential energy is infinite at 𝑥 = ±𝑎, the probability of finding the 

particle outside the well is zero. Therefore, the wave function 𝜓(𝑥) must vanish for  

|𝑥| > 𝑎.  

Since the wave function must be continuous, it must vanish at the walls: 

𝜓(𝑥) = 0       at         𝑥 = ±𝑎 

For |𝑥|  <  𝑎, the Schrödinger equation reduces to 

 

…(4.12) 

…(4.13) 

…(4.14) 

…(4.15) 



The general solution  of this equation is, 

 

Applying the boundary condition 

1) at 𝑥 =  𝑎, we obtain 

 
2) at 𝑥 =  −𝑎, we obtain 

 

By addition these two equations we get, 

𝐵 𝑐𝑜𝑠 𝑘𝑎 = 0 

By subtraction these two equations we get 

𝐴 𝑠𝑖𝑛 𝑘𝑎 = 0 

• We cannot allow both A and B to be zero because this would give the 

physically uninteresting trivial solution 𝝍(𝒙) = 𝟎 for all x.  

• We cannot make both sin ka and cos ka zero for a given value of k.  

• Hence, there are two possible classes of solutions: 

First-class:  𝐴 = 0      𝑎𝑛𝑑     cos 𝑘𝑎 = 0 

Second class:  𝐵 = 0      𝑎𝑛𝑑     sin 𝑘𝑎 = 0 

The conditions are satisfied if 

𝑘𝑎 =
𝑛𝜋

2
 

Where n is odd integer for the first class and an even integer for the second class. 

Thus, the eigenfunctions for the two classes are, respectively, 

 

 

…(4.16) 

…(4.17-b) 

…(4.17-a) 

…(4.18) 



∫ 𝜓𝑛
∗(𝑥)𝜓𝑛(𝑥) 𝑑𝑥

𝑎

−𝑎

= 1 

This gives, 

 

 

 

 

From the equation (4.18), the only allowed values of 𝑘 are,  

𝑘𝑛 =
𝑛𝜋

2𝑎
                                   𝑛 = 1,2,3, … 

From (4.15) and (4.22) the energy eigenvalues for both classes are, 

  

Conclusion: from equation (4.23) 

• The energy is quantized. 

• The integer n is called a quantum number. 

• There is an infinite sequence of discrete energy levels. 

• There is only one eigenfunction for each level. 

• The energy levels are nondegenerate. 

• The eigenfunctions 𝜓𝑛(𝑥) and 𝜓𝑚(𝑥) corresponding to different 

eigenvalues are orthogonal. 

 

…(4.19) 

…(4.21) 

…(4.20) 

…(4.22) 

…(4.23) 

…(4.24) 



 

The energy level diagram 

 

 

 

 

 

 

 

 

 

Wave function    Probability density 

Note that the nth eigenfunction has (n – 1) nodes within the box. This follows 

from (4.20) and (4.21). 



The position uncertainty is roughly given by Δ𝑥 ≈ 𝑎. Therefore, the minimum  

momentum uncertainty is Δ𝑝 ≈ ℏ/𝑎. This leads to the minimum kinetic energy of  

order ℏ2/𝑚𝑎2. Equation (4.23) tells us that this agrees with the value of 𝐸1. 

It is important to note that the lowest possible energy, also called the zero-point 

energy, is not zero. 

Why the lowest energy cannot be zero in a one-dimensional infinite square 

well? 

 By trapping the particle in a limited region, we get information about its position. 

Therefore, its momentum cannot be known with complete precision and this 

prevents any possibility of the particle being at rest. So, the lowest energy cannot 

be zero, and this fact is in agreement with the uncertainty principle. 

Parity 

The two classes of eigenfunctions that we have obtained have one important 

difference. 

1- The eigenfunctions (4.20) belonging to the first class are even functions of 

x: 

𝜓𝑛(𝑥) =
1

√𝑎
cos (

𝑛𝜋

2𝑎
𝑥) 

𝜓𝑛(−𝑥) = 𝜓𝑛(𝑥) 

These functions are said to have even parity.  

2- The eigenfunctions (4.21) belonging to the second class are odd functions of 

x: 

𝜓𝑛(𝑥) =
1

√𝑎
sin (

𝑛𝜋

2𝑎
𝑥) 

𝜓𝑛(−𝑥) = −𝜓𝑛(𝑥) 

These functions are said to have odd parity. 

This dividing of the eigenfunctions into even and odd types is a consequence of the 

fact that the potential is symmetric about the origin: 𝑉(−𝑥) = 𝑉(𝑥). 


